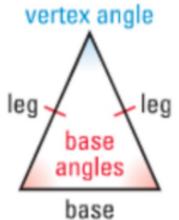


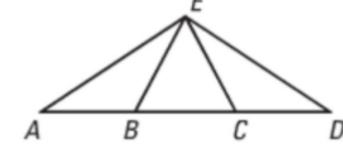
Goals: I can apply the isosceles triangle theorem and its converse. HSG.CO.B.13


Essential Questions:

- 1.) What is the Isosceles Triangle Theorem?
- 2.) What is the Converse of the Isosceles Triangle Theorem?
- 3.) What is a corollary?
- 4.) What are the corollaries that follow the Isosceles Triangle theorem?

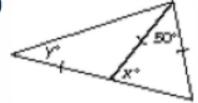
Isosceles & Equilateral Triangles (4-5)

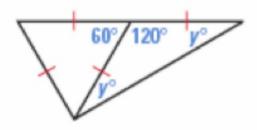
Goal: 1	can apply the isosceles triangle	
theore	n, its converses, and corollaries	•


Isosceles Triangle	
Legs	
Vertex angle	
Base	
Base angles	

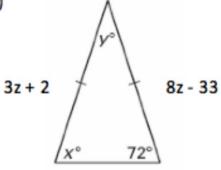
nt.	ngge
Base Angles Theorem	Isosceles Triangle Theorem:
Base Angles Converse	Converse of the Isosceles Triangle Theorem:
Corollaries	If a triangle is equilateral, then it is If a triangle is equilangular, then it is
Additional Theorem: The of the vertex angle of an of the base.	

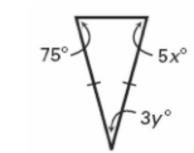
Use the diagram to fill in the blanks. Tell what theorem you used.


- A) If $\overline{AE}\cong \overline{DE}$, then \angle _____ $\cong \angle$ _____. Theorem or Converse
- B) If \angle EDC \cong \angle CED, then $___$ \cong $___$. Theorem or Converse
- C) If $\overline{AB} \cong \overline{EB}$, then \angle ____ $\cong \angle$ ____. Theorem or Converse

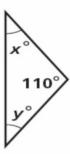

D) If \angle EBC \cong \angle ECB, then $___$ \cong $___$. Theorem or Converse

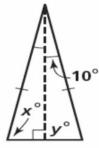
Using the Base Angles Theorem and the Converse of the Base Angles Theorem, find the value of x and y and z.

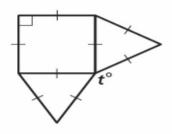



B)

C)

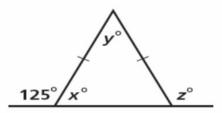

D)

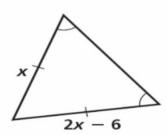


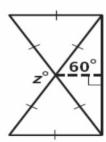

Find the values of the variables.

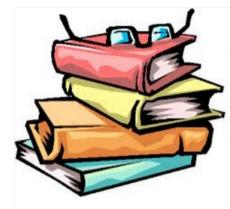
1.
$$x = __, y = __$$

2.
$$x = y = 0$$








4.
$$x = ____, y = ____, z = _____$$

5.
$$x =$$

Goals: I can apply the isosceles triangle theorem and its converse.

Essential Questions:

HSG.CO.B.13

- 1.) What is the Isosceles Triangle Theorem?
- 2.) What is the Converse of the Isosceles Triangle Theorem?
- 3.) What is a corollary?
- 4.) What are the corollaries that follow the Isosceles Triangle Theorem?

Assignment: Page 230: 1-14, 20-22, 30-32