3-2 Proving Lines Parallel

The previous section (3-1 Properties of Parallel Lines) proved angles are congruent knowing the lines were parallel. In this section (3-2 Proving Lines Parallel) we will learn about postulates and theorems that are the converse of the postulates and theorems from 3-1. We will be proving lines are parallel knowing certain angles are congruent.

Postulate 3-2:

Converse of the Corresponding Angles Postulate:

If two lines and a transversal form corresponding angles that are congruent, then the two lines are parallel.

Converse of the Alternate Interior Angles Theorem

If two lines and a transversal form alternate interior angles that are congruent, then the two lines are parallel. If $\angle 1 \cong \angle 2$, then |I| = m.

Theorem 3-6: Converse of Same-Side Interior Angles Theorem

If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.

If $\angle 2$ and $\angle 4$ are supplementary, then | l | m.

Examples:

1.) Which lines, if any, must be parallel if $\angle 3 \cong \angle 4$?

Justify your answer with a postulate or theorem.

2.) Which lines, if any, must be parallel if angle 3 and angle 2 are supplementary? Justify your answer with a postulate or theorem.

Theorem 3-7: Converse of Alternate Exterior Angles Theorem

If two lines and a transversal form alternate exterior angles that are congruent, then the two lines are parallel.

If $\angle 1 \cong \angle 2$, then a \parallel b.

Theorem 3-8: Converse of Same-side Exterior Angles Theorem

If two lines and a transversal form same-side exterior angles that are supplementary, then the two lines are parallel.

If $\angle 1$ and $\angle 3$ are supplementary, then a \parallel b.

Example:

3.) Find the value of x for which 1 is parallel to m.

4.) Using the diagram below, determine which lines, if any, must be parallel. If any lines are parallel, use a theorem or postulate to tell why.

$$a.) \angle 1 \cong \angle 9$$

$$b.) \angle 7 \cong \angle 10$$

d.) $\angle 2$ is supplementary to $\angle 3$

Read through the two-cloumn proof of Theorem 3-7 (Converse of the Alternate Exterior Angles Theorem) on page 136.

Proof

Proof of Theorem 3-7

If two lines and a transversal form alternate exterior angles that are congruent, then the two lines are parallel.

Given: $\angle 1 \cong \angle 2$

Prove: $a \parallel b$

Statements	Reasons
1. ∠1 ≅ ∠2	1. Given
2. ∠1 ≅ ∠4	2. Vertical angles are congruent.
3. ∠2 ≅ ∠4	3. Transitive Property of Congruence
4. $a \parallel b$	4. If two lines and a transversal form congruent
	corresponding angles, then the lines are parallel.

5.) Let's complete the **proof of Theorem 3-8** together.

Given: m 1 + 3 = 180

Prove: a || b

a

Which lines or segments are parallel? Justify your answer with a theorem or postulate.

1.

3.

2.

4.

Algebra Find the value of x for which $a \parallel t$.

5.

7.

6.

8.

