

Rolles

Theorems About Maximums and Minimums Rolle's Theorem Let the continuous on [a b] and differentiable

Let f be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there is at least one value c in (a,b) such that f'(c) = 0

EVT Rolles

ø

Apply Rolle's Theorem if Applicable

$$f(x) = x^2 - 5x + 4, [1,4]$$

1234

Apply Rolle's Theorem if Applicable

$$f(x) = \cos 2x, [0, p]$$

1234

Apply Rolle's Theorem if Applicable

Find the x-intercepts of $f(x) = (x^2 - 2x - 3)/(x+2)$ and apply Rolle's Theorem if possible.

Ċ

Apply Rolle's Theorem if Applicable

$$h(x) = 3 - |x - 3|, [0, 6]$$

1234

Mean Value Theorem

If f is continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a number c in (a,b) such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

C

C

Apply MVT if Applicable

$$f(x) = x^3 - x^2 - 2x, [-1,1]$$

Apply MVT if Applicable f(x) = (x+1)/x, [1/2, 2]

Apply MVT if Applicable

Given $g(x) = x^3$ on the interval [0,2], find the equation of the tangent line at the point c described in the MVT.

Apply MVT if Applicable

The height of an object t seconds after it is dropped from a height of 300 meters is $s(t) = -4.9t^2 + 300$.

- a) Find the average velocity of the object after 2 seconds.
- b) At what point of the fall was the object falling at the average?

Understanding Concepts

Let f be continuous on [a,b] and differentiable on (a,b). If there exists c in (a,b) such that f'(c) = 0, does it follow that f(a) = f(b)? Explain.

Understanding Concepts

Let f be continuous on [a,b] and differentiable on (a,b). Also, suppose that f(a) = f(b) and that c is a real number in (a,b) such that f'(c)=0. Find an interval for the function g over which Rolle's can be applied and find the corresponding critical number of g (k is a constant)

- a) g(x) = f(x) + k
- b) g(x) = f(x-k)
- c) g(x) = f(kx)

Understanding Concepts

The function:

$$f(x) = \begin{cases} 0, & x = 0 \\ 1 - x, & 0 < x \le 1 \end{cases}$$

is differentiable on (0,1) and satisfies f(0) = f(1). However, its derivative is never zero on (0,1). Does this contradict Rolle's Theorem? Explain. C

Understanding Concepts

Can you find a continuous and differentiable function f such that f(-2)=-2, f(2)=6 and f'(x)<1 for all x? Explain.

