Quick Note on Inverses

- 1. An inverse function of f(x) is $\frac{9}{x}$ the reflection over y = x
- 2. If f(x) has a point (x,y), then
 f⁻¹(x) has a point (y,x). The
 domain of f becomes the
 range of f⁻¹ and the range of
 f becomes the domain of f⁻¹.
- 3. We can find inverses algebraically by switching the x and y around and then solve for y.

Find the inverse of f(x):

1.
$$f(x) = 4x - 7$$

2.
$$f(x) = 2x^5 - 5$$

1.
$$f(x) = 4x - 7$$

2. $f(x) = 2x^5 - 5$
3. $f(x) = \sqrt{9 - x^2}$

Let
$$f(x) = \frac{2x-1}{4}$$
, find f⁻¹(x) when x = 2

Let
$$f(x) = x^2 - 5x + 1$$
, find $f^{-1}(x)$ when $x = 3$

Find
$$(f^{-1})'(a)$$
 if $a = 2$ and $f(x) = 3x + 4$

Find (f⁻¹)'(a) if a = 1 and f(x) = cos x and $0 \le x \le \frac{\pi}{2}$

Find
$$(f^{-1})'(a)$$
 if $a = 4$ and $f(x) = x^3 - 4x^2 + 1$

Let f be a differentiable function such that f(5) = 15, f(4) = 5, f'(5) = -7, and f'(4) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(5)?

Homework: p. 347# 29-39 odd, 71-75 odd